ECS455: Chapter 4 Multiple Access

4.7 Synchronous CDMA

Dr.Prapun Suksompong

Office Hours:
BKD, 6th floor of Sirindhralai building
Tuesday $\quad 14: 20-15: 20$
Wednesday 14:20-15:20
Friday $\quad 9: 15-10: 15$

Synchronous CDMA Model

- Timing is important for orthogonality
- It is not possible to obtain orthogonal codes for asynchronous users.
- Bit epochs are aligned at the receiver
- Require
- Closed-loop timing control or
- Providing the transmitters with access to a common clock (such as the Global Positioning System)

Walsh Functions [Walsh, 1923]

- Used in second- (2G) and third-generation (3G) cellular radio systems for providing channelization
- A set of Walsh functions can be ordered according to the number of zero crossing (sign changes)

Figure 5.1 The Walsh functions of order 8.
[Lee and Miller, 1998, Fig. 5.1]

Walsh Functions of Order N: Definition

A set of N functions, denoted, $\left\{W_{j}(t) ; t \in(0, T), j=0,1, \ldots, N-1\right\}$, such that

- $W_{j}(t)$ takes on the values $\{+1,-1\}$
- Except at the jumps (where it takes the value zero)
- $W_{j}(0)=1$ for all j.
- $W_{j}(t)$ has exactly j sign changes (zero crossings) in the interval $(0, T)$.
- Orthogonality: $\int_{0}^{T} W_{j}(t) W_{k}(t) d t= \begin{cases}0, & \text { if } j \neq k, \\ T, & \text { if } j=k .\end{cases}$
- Each function $W_{j}(t)$ is either odd or even with respect to the midpoint of the interval.
Application:
Once we know how to generate these Walsh functions of any order N, we can use them in N-channel orthogonal multiplexing or multiple access applications.

Walsh Sequences

$\boldsymbol{W}_{0}=$	0	0	0	0	0	0	0	0	0

- The Walsh functions, expressed in terms of $\{+1,-1\}$ values, form a group under the multiplication operation (multiplicative group).
- The Walsh sequences, expressed in terms of $\{0,1\}$ values, form a group under modulo-2 addition (additive group).
- Closure property:

$$
\begin{gathered}
\mathbf{W}_{i}(\boldsymbol{t}) \cdot \mathbf{W}_{\boldsymbol{j}}(\boldsymbol{t})=\mathbf{W}_{r}(\boldsymbol{t}) \\
\mathbf{W}_{i} \oplus \mathbf{W}_{j}=\mathbf{W}_{r}
\end{gathered}
$$

Abstract Algebra

- A group is a set of objects G on which a binary operation ". " has been defined. " $\cdot ": G \times G \rightarrow G$ (closure). The operation must also satisfy

1. Associativity: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
2. Identity: $\exists e \in G$ such that $\forall a \in G a \cdot e=e \cdot a=a$
3. Inverse: $\forall a \in G \exists$ a unique element $a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$.

- A group is said to be commutative (or abelian) if it also satisfies commutativity:

$$
\forall a, b \in G, a \cdot b=b \cdot a .
$$

- The group operation for a commutative group is usually represented using the symbol " + ", and the group is sometimes said to be "additive."

Walsh sequences of order 64

Table 5.2 Walsh functions of order 64 (indexed by zero crossings)

	00
W_{1}	0000000000000000000000000000000011111111111111111111111111111111
W_{2}	000000000000000111111111111111111111111111111111000000000000000
W_{3}	000000000000000011111111111111111000000000000000
W	00000000111111111111111100000000000000011111111
W	00000000111111111111111100000000111111110000000000000000
W_{6}	0000000011111111000000001111111111111111000000001111111100000000
W	0000000011111111000000001111111100000000111111110000000011111111
W_{8}	0000111111110000000011111111000000001111111100000000111111110000
W_{9}	000011111111000000001111111100001111000000001111111100000000
W	0000111111110000111100000000111111110000000011110000111111
	0000111111110000111100000000111100001111111100001111000
	000011110000111111110000111
W	000
	00
	00
	0011110000111100001111000011110000111100001111000011110000111100
	0011110000111100001111000011110011000011110000111100001111000011
W_{18}	0011110000111100110000111100001111000011110000110011110000111100
W_{19}	0011110000111100110000111100001100111100001111001100001111000011
\boldsymbol{W}_{20}	0011110011000011110000110011110000111100110000111100001100111100
	0011110011000011110000110011110011000011001111000011110011000011
	0011110011000011001111001100001111000011001111001100001100111100
W_{23}	00111100110000110011110011000011001111001100001100111
W^{2}	0011001111001100001100111100110000110011110011000011
${ }^{2}$	0011001111001100001100111100110011001100001100111100110
W_{26}	0011001111001100110011000011001111001100001100110011001111
\boldsymbol{W}_{27}	0011001111001100110011000011001100110011110011001100110000
	001100110011001111001100110011000011001100110011110011001
	001100110011001111001100110011001100110011001100001100
W	001100110
W	00110011001100110011001100110011001100

0110011001100110011001100110011001100110011001100110011001100110 0110011001100110011001100110011010011001100110011001100110011001 0110011001100110100110011001100110011001100110010110011001100110 0110011001100110100110011001100101100110011001101001100110011001 0110011010011001100110010110011001100110100110011001100101100110 0110011010011001100110010110011010011001011001100110011010011001 0110011010011001011001101001100110011001011001101001100101100110 0110011010011001011001101001100101100110100110010110011010011001 0110100110010110011010011001011001101001100101100110100110010110 0110100110010110011010011001011010010110011010011001011001101001 0110100110010110100101100110100101101001100101101001011001101001 0110100101101001100101101001011001101001011010011001011010010110 0110100101101001100101101001011010010110100101100110100101101001 0110100101101001011010010110100110010110100101101001011010010110 0110100101101001011010010110100101101001011010010110100101101001 0101101001011010010110100101101001011010010110100101101001011010 0101101001011010010110100101101010100101101001011010010110100101 0101101001011010101001011010010110100101101001010101101001011010 0101101001011010101001011010010101011010010110101010010110100101 0101101010100101101001010101101001011010101001011010010101011010 0101101010100101101001010101101010100101010110100101101010100101 0101101010100101010110101010010110100101010110101010010101011010 0101101010100101010110101010010101011010101001010101101010100101 0101010110101010010101011010101001010101101010100101010110101010 0101010110101010010101011010101010101010010101011010101001010101 0101010110101010101010100101010110101010010101010101010110101010 0101010110101010101010100101010101010101101010101010101001010101 0101010101010101101010101010101001010101010101011010101010101010 010101010101010110101010101010101010101010101010010101010101010 0101010101010101010101010101010110101010101010101010101010101010 01

Walsh Function Generation

- We can construct the Walsh functions by:

1. Using Rademacher functions
2. Using Hadamard matrices
3. Exploiting the symmetry properties of Walsh functions themselves

- The Hadamard matrix is a square array of " +1 " and " -1 ", whose rows and columns are mutually orthogonal.
- We can replace " +1 " with " 0 " and " -1 " with " 1 " to express the Hadamard matrix using the logic elements $\{0,1\}$.
- The 2×2 Hadamard matrix of order 2 is

$$
\mathbf{H}_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \equiv\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Hadamard matrix: Properties

Suppose \mathbf{H}_{N} is an $N \times N$ Hadamard matrix.

- $\quad N \geq 1$ is called the order of a Hadamard matrix.
- $\quad N=1,2$, or $4 t$ where t is a positive integer.
- $\mathbf{H}_{N} \mathbf{H}_{N}^{T}=N \mathbf{I}_{N}$
$0 \quad \mathbf{I}_{N}$ is the $N \times N$ identity matrix
Key idea for construction:
If \mathbf{H}_{a} and \mathbf{H}_{b} are Hadamard matrices of order a and b, respectively, $\mathbf{H}_{a} \otimes \mathbf{H}_{b}$ is a Hadamard matrix $\mathbf{H}_{a b}$ of order $a b$ whose elements are found by substituting
\mathbf{H}_{b} for +1 (or logic 0) in \mathbf{H}_{a} and
$-\mathbf{H}_{b}\left(\right.$ or the complement of $\left.\mathbf{H}_{b}\right)$ for $-1\left(\right.$ or logic 1) in \mathbf{H}_{a}.

Kronecker Product

- An operation on two matrices of arbitrary size
- Named after German mathematician Leopold Kronecker.
- If \mathbf{A} is an m-by-n matrix and \mathbf{B} is a p-by- q matrix, then the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ is the $m p-$ by-nq matrix
- Example

$$
\left.\left[\begin{array}{ll}
1 & \underline{2} \\
3 & 4
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 5 \\
6 & 7
\end{array}\right]=\left(\begin{array}{ll}
1 \cdot 0 & 1 \cdot 5 \\
1 \cdot 6 & 1 \cdot 7 \\
3 \cdot 0 & 3 \cdot 5 \\
3 \cdot 6 & 3 \cdot 7
\end{array}\right) \xrightarrow[\begin{array}{ll}
2 \cdot 0 & 2 \cdot 5 \\
2 \cdot 6 & 2 \cdot 7 \\
4 \cdot 0 & 4 \cdot 5 \\
4 \cdot 6 & 4 \cdot 7
\end{array}]\right]{\left[\begin{array}{cccc}
0 & 5 & 0 & 10 \\
6 & 7 & 12 & 14 \\
0 & 15 & 0 & 20 \\
18 & 21 & 24 & 28
\end{array}\right]} .
$$

Hadamard matrix: Sylvester's Construction

If N is a power of two,
start with $\mathbf{H}_{1}=[+1] \equiv[0]$,

$$
\begin{gathered}
\text { then } \mathbf{H}_{2 n}=\left[\begin{array}{cc}
\mathbf{H}_{N} & \mathbf{H}_{N} \\
\mathbf{H}_{N} & -\mathbf{H}_{N}
\end{array}\right] \equiv\left[\begin{array}{ll}
\mathbf{H}_{N} & \mathbf{H}_{N} \\
\mathbf{H}_{N} & \overline{\mathbf{H}_{N}}
\end{array}\right] . \\
\mathbf{H}_{1}=[+1] \longmapsto \mathbf{H}_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \longrightarrow \underset{\mathbf{2} \times \mathbf{2}}{\longrightarrow} \mathbf{H}_{\mathbf{4}}=\mathbf{H}_{2} \otimes \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & \mathbf{H}_{\mathbf{2}}^{1} & 1 & \mathbf{H}_{\mathbf{2}}{ }^{1} \\
1 & -1 & 1 & -1 \\
\hdashline 1 & 1 & -1 & -1 \\
1 & -1 & -1 & -\mathbf{H}_{\mathbf{2}}
\end{array}\right]
\end{gathered}
$$

Two ways to get H_{8} from H_{2} and H_{4}

$$
\mathbf{H}_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad \mathbf{H}_{4}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Properties

- Orthogonality: the rows are orthogonal
- Geometric interpretation: every two different rows represent two perpendicular vectors
- Combinatorial interpretation: every two different rows have matching entries in exactly half of their elements and mismatched entries in the remaining elements.
- Symmetric
- Closure property
- The elements in the first column and the first row are all 1 s . The elements in all the other rows and columns are evenly divided between 1 and -1. the sum of the elements on
- Traceless property $t_{r}\left(H_{N}\right)=0$ the main diagonal

$$
+\left(H_{2}\right)=\operatorname{tr}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\right)=1+(-1)=0
$$

Walsh-Hadamard (WH) Sequences

- Rows (or columns) of the Hadamard matrix when the order is $N=2^{t}$
- "Same" as Walsh sequences except that
- they are not indexed according to the number of sign changes.
- Used in synchronous CDMA
- It is possible to synchronize users on the downlink, where all signals originate from the same transmitter.
- It is more challenging to synchronize users in the uplink, since they are not co-located.
- Asynchronous CDMA

Hadamard Matrix in MATLAB

- We use the hadamard function in MATLAB to generate Hadamard matrix.

```
N = 8; % Length of Walsh (Hadamard) functions
hadamardMatrix = hadamard(N)
hadamardMatrix =
```


1
1
1
1
1
1
1
1
1
1
-1
1
-1
1

-1
1
1
-1

1	1		1	1		1	1
2	3	-1	4	1	-1	6	1
-1	-1		7	1	-1	-1	
-1	1	1	-1	-1	1		
1	1	-1	-1	-1	-1		
1	-1	-1	1	-1	1		
-1	-1	-1	-1	1	1		
-1	1	-1	1	1	-1		

- The Walsh sequences in the matrix are not arranged in increasing order of their sequencies or number of zerocrossings (i.e. 'sequency order') .

Walsh Matrix in MATLAB

- The Walsh matrix, which contains the Walsh functions along the rows or columns in the increasing order of their sequencies is obtained by changing the index of the hadamardMatrix as follows.

$\operatorname{HadIdx}=0: N-1 ;$	Hadamard index $M=\log 2(N)+1 ;$
	$\%$ Number of bits to represent the index

- Each column of the sequency index (in binary format) is given by the modulo-2 addition of columns of the bit-reversed Hadamard index (in binary format).

```
binHadIdx = fliplr(dec2bin(HadIdx,M)); % Bit reversing of the binary index
binHadIdx = uint8(binHadIdx)-uint8('0'); % Convert from char to integer array
binSeqIdx = zeros(N,M-1,'uint8'); % Pre-allocate memory
for k = M:-1:2
    % Binary sequency index
    binSeqIdx(:,k) = xor(binHadIdx(:,k),binHadIdx(:,k-1));
end
SeqIdx = bin2dec(int2str(binSeqIdx)); % Binary to integer sequency index
walshMatrix = hadamardMatrix(SeqIdx+1,:) % 1-based indexing
```

walshMatrix =

1	1
1	1
1	1
1	1
1	-1
1	-1
1	-1
1	-1

1	1	1
1	1	-1
-1	-1	-1
-1	-1	1
-1	1	1
-1	1	-1
1	-1	-1
1	-1	1

CDMA via Hadamard Matrix

```
N = 8;
H = hadamard(N);
```

\% 8 Users
\%\% At transmitter(s),
$s=\left[\begin{array}{llllllll}8 & 0 & 12 & 0 & 18 & 0 & 0 & 10\end{array}\right] ;$
$r=s^{*} H$
\% r = 8.*H(1,:) + 12.*H(3,:) + 18.*H(5,:) + 10.*H(8,:);
\% Alternatively, use
\% r = ifwht(s,N,'hadamard')
\%\% At Receiver,
s_hat $=(1 / N)^{*} r^{*} H^{\prime}$
\% Alternatively, use
\% s_hat $=\underbrace{\text { Fwht }}_{1}\left(r, N,{ }^{\prime}\right.$ hadamard')

138

